A látás fizikai természete, Optika és látórendszerek | Digitális Tankönyvtár

A látás mechanizmusa A látott kép fogalma Érzékeljük a bennünket körülvevő világot, és az egyik legtöbb információt tartalmazó érzékelésünk a látás. Az érzet, amit látásunk kelt, az a kép, amit agyunk alkot. A képalkotás folyamata során a szemünkbe érkező fénysugarakat a szem leképező rendszerével a retinára vetíti, és az ott létrejött képpel a fotoreceptorokat ingerelve, az agyhoz kapcsolódó idegsejteken keresztül, idegimpulzusok formájában az agyunkba juttatja.
Adott tárgy különböző részéről érkező inger hatására a kialakuló inger az agyban képpé áll össze, ezt hívjuk fényészleletnek. Ennek kialakulásában már mentális folyamatok is helyet kapnak.
A fényingertől a fényészleletig tartó úton végigkövetve az egyes látószervek részeinek működését, a következő főbb csoportosítást tehetjük: a szem leképező mechanizmusa; a retinán elhelyezkedő, optikai sugárzást ideg-ingerületté alakító, sejtcsoportok csapok és pálcikák mechanizmusa; a csap és pálcika mechanizmust az agy felé továbbító ingerek kialakulása, még a retina szintjén; az idegpályák mechanizmusa a retina és az agy látásfeldolgozó területei között; végül az agyi feldolgozás, melynek során kialakul a látott tárgy mentális képe, hozzárendelődik forma- mozgás- színinformáció; asszociációk alakulnak ki már ismert képekkel.
Már az ókorban foglalkoztatta a gondolkodókat a látás és a képalkotás kérdése. Püthagorasz követői a látást a tárgyért nyúló kézhez hasonlították: a lélek sugara a pupillán keresztül éri el a tárgyat, amelyet letapogat, és így ismeri fel a látás fizikai természete értelem az alakot és a színt.
Epikurosz és követői úgy vélekedtek, hogy az ember a környezetében levő tárgyakról leszakadt képet — egy légies ködön keresztül — a pupilláján át érzékeli. Így válik az ember számára láthatóvá a tárgy, és a fény terjedésének sebességével azonos időben érzékeli. Az atomisták szerint a szemlélt tárgyról leszakadt atomok áramlanak a szembe, és így alkot az értelem képet a világról.
A látás fizikai természete Érettségi - Fizika: Foton a látásmód helyreállítása A fény polarizációja[ szerkesztés ] Bővebben: polarizáció Polarizált fényről akkor beszélhetünk, ha a fényhullámokban az elektromos térerősségvektor rezgési síkja egységes irányú. A természetes, nem pontszerű fényforrásból kiinduló fény nem polarizált, benne vegyesen megtalálható mindenféle hosszanti síkban rezgő hullám. A fény polarizációjával kapcsolatos első leírás Erasmus Bartholinus dán professzor nevéhez fűződik, aki egy átlátszó izlandi pát kristályon keresztülnézve meglepve tapasztalta, hogy a tárgyaknak kettős képe látszik.
Arisztotelész szerint a megvilágított tárgyról visszaverődő fény a közvetítő levegőn át érkezik a szemhez. A fényérzékelés fejlődése Az első lépés a fény és a sötétség megkülönböztetése. Az egysejtűek a sejthártyájukkal érzékelik a fény intenzitását, és ennek változására valamilyen mozgással reagálnak.
Az érzékelés második foka, amikor már a fény intenzitását és a fényforrás irányát is meg tudja határozni az élőlény. A következő lépcsőfok a formalátás, az utolsó pedig a színek és a mozgás érzékelése. Az ostoros moszatoknál már szemfoltot is találhatunk. A csalánozóknál sem fejlődött ki külön szerv a fény érzékelésére, a látás fizikai természete különböző kívülről jövő ingereket egész testfelületükön át veszik fel.
Néhány medúzafajnál viszont megjelennek a kezdetleges fényreceptorok is. A laposférgeknél a különböző fényérzékeny sejtek összetömörülnek és ezek a hám alá süllyednek. Így kezdetleges csésze- és gödörszemek alakulhatnak ki. A gyűrűsférgeknél az a látás fizikai természete feji részénél találjuk meg ezeket a sejttömörüléseket. Egyes fajoknál már találkozhatunk bonyolult felépítésű látószervvel pl. A puhatestűek közül a csigákra és a fejlábúakra jellemző a fényérzékelés.
A tüskésbőrűek törzsénél nem találunk látószervet, de valamilyen formában ők is érzékelik a fényt.
A látás Egyik legfontosabb érzékszervünk a szemünk. Az egészséges emberi szem az elektromágneses sugárzás látható fénynek nevezett, körülbelül nm és nm közötti hullámhosszú tartományát fogja fel.
Ez a fényérzékenység feltehetően a kültakaróban jelen levő pigmentált sejtekhez köthető. A halak hólyagszeme, a fejlábúak szemével ellentétben, nem a hám betüremkedése, hanem az agy kitüremkedése. A halak rövidlátók, így látásuk nem tökéletes, de szemük szín- és képlátásra alkalmas.
A látás fizikai természete
A kétéltűek látószerve igen fejlett, de csak a mozgást érzékelik. A hüllők 4. A kígyók két szemhéja átlátszó és összenőtt, ezért nem pislognak. Egyes madarakban a hipotalamusz bizonyos idegsejtjei érzékelik a koponyatetőn átszűrődő gyenge fényt. Így érzékelik a kakasok is a hajnal közeledését. Kifutási helyénél van a vakfolt, ahol a retinán nem találunk receptorsejteket.
Az elülső és torz a látás és fáj a fej hátsó szemcsarnok a szivárványhártya előtt és mögött található, itt kering a csarnokvíz, mely a lencsét táplálja. Akkomodáció A szemben a fénytörésért főleg a szaruhártya és a lencse a felelős.
A szem fénytörő képességét dioptriában D adjuk meg. A szaruhártya fénytörő képessége minden a látás fizikai természete azonos, míg a lencsénél ez nincs így. Attól függően változik, hogy a lencse magját vagy réteges köpenyét vizsgáljuk. Ez a fénytörő képesség egyénenként változhat, de az egyszerűség kedvéért az orvosok megállapítottak a szaruhártyára és a lencsére együttvéve egy 66 D átlag törőképességet.
A szem alkalmazkodását akkomodációját a lencse és a szem izmai teszik lehetővé. Azt a legtávolabbi pontot, amelyet alkalmazkodás nélkül élesen látunk, távolpontnak nevezzük.
Közelpontnak azt a legközelebbi pontot hívjuk, amelyet maximális alkalmazkodás esetén látunk. A közelpont fiatal korban egészséges szem esetén 10 cm távolságban, a távolpont a végtelenben van. A két pont közötti távolság adja a szem alkalmazkodóképességét, ami 10—15 D közé esik.
2. fejezet - Az emberi látással kapcsolatos alapismeretek
A korral a lencse és a lencsefüggesztő rostok is vizet veszítenek, így megváltozik a lencse alkalmazkodóképessége. Ez biztosítja, hogy a retinára eső kicsinyített, fordított kép éles legyen.
Közeli tárgyak nézésekor a szem izmai összehúzódnak, ezáltal a lencsetokhoz rögzült feszítő rostok ellazulnak, a lencse gömbölydedebbé válik. Ekkor a pupillák összeszűkülnek. Távoli tárgyak nézésekor ennek a fordítottja játszódik le. A halaknál, a kígyóknál és a kétéltűeknél nem a lencse domborúsága változik, mert a szemlencsét mozgatják előre-hátra speciális izmok segítségével.
Optika és látórendszerek | Digitális Tankönyvtár
A pupilláknak nem csak ez az alkalmazkodása ismert. A szembogár akkor is összeszűkül, ha világítás éri. Az éjjeli életmódot folytató gerincesekben ez a fajta alkalmazkodás kiegészül a pupillanyílás alakváltozásával is.
Ezen kívül, az a látás fizikai természete rétegében fényvisszaverő hártyát is találunk, ami az el nem nyelt fénysugarakat visszaveri, amelyek ezáltal újból áthaladnak a retinán, ezzel is növelve a fény intenzitását. A tárgyak színe Láttuk korábban, hogy fénynek az elektromágneses sugárzási spektrum kb. E tartományból is az emberek többsége a nm és nm közötti fényhullámokat érzékeli csak.
A spektrum színeinek hullámhossza és frekvenciája az alábbi táblázatban látható: 4.
Az elektromágneses hullámok jelentős részét ugyanis a légkör elnyeli, így azok nem érik el a Föld felszínét. Az egyik a rádióhullámok tartománya, a másik pedig a látható fényé. A látható fény tartományának sugarai — azaz ami végül az evolúció során láthatóvá lett — igen kis tárgyak felületéről is egyszerű szabályokat követve verődnek visszaés ráadásul az anyagtól függően általában igen jellegzetes visszaverődési színképet produkálnak, így az ezt érzékelni képes élőlények jól hasznosítható képet kapnak a környezetükről.
A szín A szín fogalma a látáshoz szorosan kapcsolódó vizuális érzéklet egyik tulajdonsága. Az észlelt szín függ a színinger spektrális tulajdonságaitól, az ingert létrehozó tárgy méretétől, alakjától, szerkezetétől, és környezetétől; függ az észlelő adaptációs tapasztalataitól, befogadóképességétől és a megfigyelthez hasonló érzékletekre vonatkozó emlékeitől.
Ha egy tárgyra színes fényt vetítünk, vagy a tárgy maga színes; vagy mindkét feltétel teljesül, akkor a róla visszaverődő fény spektruma hiányos; egyenlőtlen — vagyis színes. Ezt színes fényingernek nevezzük. Műszeres mérését a színinger metrika feladata ellátni. Az emberi látószerv képes a fénynek ezt a tulajdonságát érzékelni, ekkor a látószervben színes fényérzéklet keletkezik.
A látóideg által az agyba továbbított érzékletet az a látás fizikai természete feldolgozza, és a látókéregben színes észlelet keletkezik. Az észleletet az emberi agy hangulatának, pszichológiai beállítottságának megfelelően értékeli.
Ilyen jelenség például a szukcesszív színkontraszt a színingerek megítélése azok egymás utánisága alapján. A szín kifejezést önmagában használni megtévesztő. Háromfajta érzékelő fotopigmentet lehet megkülönböztetni, melyek érzékenysége a vörösa zöld és a kék színeknél a legerősebb. A látórendszer fontos tulajdonsága a színállandóság, tehát az agy a színeket nem abszolút módon azonosítja, hanem relatív úton, a környezethez hasonlítva.
Egy szín származhat monokromatikus fényből, ha egy adott Hyperopia téma fénysugarat észlelünk, vagy több fény keverékéből, ha több különböző hullámhosszúságú fénysugár összességét érzékeljük. A szemünk ugyanúgy sárgának érzékeli a sárga színnek megfelelő hullámhosszú fényt, mint a vörös és a látás fizikai természete zöld színeknek megfelelő hullámhosszú fények keverékét stb. Vannak színek, amelyeknek nincs monokromatikus megfelelője, csak színkeveréssel állíthatók elő, például a bíbor.
Azt a színt, amely a teljes spektrumon azonos intenzitású, fehérnek nevezzük. Mivel a legtöbb élőlény, így az emberek látása is a Nap spektrumához igazodott, az érzékelés a látás fizikai természete a Napból érkező fényt is fehérnek nevezhetjük, noha ez csak a látható tartományban egyenletes. A fekete szín nem fény, a fény teljes hiánya válthatja ki. A kibocsátott fényenergia hullámhossz szerinti függőségét spektrális eloszlásnak vagy spektrumnak nevezzük 4. Planck ban közölte le a kísérletileg mért spektrumok elméleti magyarázatát, amelyhez fel kellett tételeznie a h.
2. fejezet - Az emberi látással kapcsolatos alapismeretek
A spektrum maximumának helye a tárgy hőmérsékletével fordított arányban változik, K hőmérsékleten Nap a maximum nm-en zöldben van. Ezt a színképi összetételt értelmezi az agyunk fehérnek. A testünk K-en 10 mikron körüli maximummal sugároz. A kibocsátott összenergia a T hőmérséklet negyedik hatványával arányos. Ugyanakkor a szemünk agyunk a Napéhoz legjobban hasonlító mesterséges megvilágítást szeretne.
Egy fényforrás színhőmérsékletét az általa okozott színérzet és egy hipotetikus feketetest-sugárzó által létrehozott színérzet alapján határozzák meg. Izzólámpák esetében, lévén, hogy a fény izzásból származik, a színhőmérséklet jól egybe esik az izzószál hőmérsékletével. A nem hőmérsékleti sugárzás elvén működő fényforrások, mint például a fénycsövek esetében közvetlen fizikai jelentése nincsen a színhőmérsékletnek.
A különböző színhőmérsékletek befolyásolják az ember hőérzetét és koncentrálóképességét. Tradicionális okokból a színhőmérséklet fordított hőmérsékleti asszociációkat okoz. A kékebb árnyalatok, bár magasabb színhőmérsékletűek, alacsonyabb hőmérséklet érzetét keltik.
Hasonlóképp a vörösebb árnyalatok melegebbnek tűnnek. Ennek oka, hogy vörössel az izzástés tüzet hozzák összefüggésbe, míg a kékkel inkább a jeget vagy a vizet. A a látás fizikai természete Fizikai tanulmányainkból ismert kísérlet: ha a közel ideális fehér fénynek tartott, kb.
Ha a színspektrumot laboratóriumi körülmények között egy keskeny résen át szemléljük, hozzávetőlegesen különböző színt érzékelhetünk. Ebből arra következtethetnénk, hogy szemünk kb. A valóságban azonban a szemünkben három különböző típusú színérzékelő van.
Az emberi szem a látható spektrumot nem érzékeli egyenletesen. A szem érzékenységi diagramján 4. Ebben a tartományban található egyébként a napsugárzás energiamaximuma is.
A diagramot sok ember szemének érzékenységi görbéjét átlagolva szerkesztették, így a diagram az átlagos emberi szem spektrális érzékenységét jellemzi. Érdemes megemlíteni, hogy a görbe alakja a fényerősségtől nem függ jelentősen. Az emberi szem — a fényképezőgépek optikai rendszerének analógiája szerint — egyszerű, két részből álló gyűjtőlencse típusú objektívvel rendelkezik. A külső a szaruhártyaa belső a szemlencse.
A szivárványhártya íriszamely a szem színét a látás fizikai természete meghatározza, a szembe lépő fény mennyiségét csökkenti. A szivárványhártya nyílása a pupillamelynek átmérője a fényerősségtől függően változik, a fényrekesz szerepét tölti be. A belépő fénysugarak áthaladnak az üvegtesten corpus vitreum és a recehártyára retina fókuszálódnak. Ezután a központi idegrendszer közreműködésével alakul ki a kép. A receptorok egyik fajtája, az ún.
A szín feldolgozásában feltehetőleg nem játszanak szerepet. A színes látást az ún. A kék- és vörösérzékelő tulajdonságai ismertek, a zöldérzékelő tulajdonságait illetően feltételezések vannak. Három monokromatikus fény összekeverésével a spektrum valamennyi színárnyalata a látás fizikai természete.
A CIE e fényeket ben szabványosította. Meghatározták, hogy egy-egy spektrumszín előállításához milyen arányban kell keverni őket.
Az eredményt a 4. Az ábrán jól követhető, hogy a látható spektrum szélső értékeit kivéve a görbék átfedik egymást. A látás fizikai természete eddigieken kívül kiderült egy igen fontos dolog, nevezetesen az, hogy a szem színfelbontó képessége lényegesen gyengébb, mint a világosságrészleteket akromatikus megkülönböztető képessége.
Azaz, az apró színrészleteket összetéveszti a hasonló fényességű szürkével. Tehát bizonyos méretű pontstruktúrán túl már nem érzékeli a szín, csak a szürkeérték változását.
Azaz az nm körüli zöld színt téveszti össze a szürkével legkésőbb; a legtöbb részletet ebben a színtartományban érzékeli. A szem korlátozott színfelbontó képességére vonatkozó felismerés jelentősen befolyásolja a színes rendszerek kialakítását. A vizsgálatok azt jelezték, hogy a kép színtartalmát képviselő információt nem kell teljes sávszélességgel részletgazdagsággal átvinni.
Ezért a színinformáció sávszélességét kb. Az utóbbi időben viszont egyértelművé vált, hogy az 1 MHz sávszélesség nem felel meg a korszerű tv-jelátvitel követelményeinek. Az újabban kifejlesztett tv-átviteli rendszerek, mint pl. Komplementer színek Kiegészítő színeknek komplementer színeknek nevezzük azokat a színingereket, amelyek additív vagy szubtraktív keverése akromatikus színtelen érzékletet hoz létre.
Komplementerek azok a színingerek is, amelyek egymásnak ellentétei. Utóbbi értelmezést esztétikai értelemben használják. Általános értelmezés szerint színpárok, amelyek a hatosztatú vagy tizenkét osztatú vagy akár folytonos színkörben egymással szemben helyezkednek el. Additív színkeverésben szürkét eredményeznek. Jelölések az NCS szerint. A látás a látás fizikai természete természete magyarázata, hogy a magyar nyelvben nincs egyértelmű megfelelője az angol cyan színnévnek amely valójában zöldeskék.